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Abstract 

The connection between the rotation matrix in 
hexagonal lattice coordinates and an angle-axis quad- 
ruple is given. The multiplication law of quadruples 
is derived. It corresponds to multiplying two matrices 
and gives the effect of two successive rotations. The 
relation is given between two quadruples that describe 
the same relative orientation of two lattices owing to 
their hexagonal symmetry; a unique standard descrip- 
tion of the relative orientation is proposed. The 
restrictions satisfied by rotations generating coin- 
cidence site lattices (CSL's) are derived for any value 
of the axial ratio p = c~ a. It is shown that the law for 
cubic lattices, where the multiplicity 2 of the CSL is 
equal to the lowest common denominator of the ele- 
ments of the rotation matrix, does not always hold 
for hexagonal lattices. A generalization of this law to 
lattices of arbitrary symmetry is given and another, 
quicker, method of determining £ for hexagonal lat- 
tices is derived. Finally, convenient algorithms are 
described for determining bases of the CSL and the 
DSC lattice. 

1. Introduction 

Consider a boundary between two grains of the same 
homogeneous phase. The boundary energy per unit 
area depends on the relative orientation of the two 
grains. It has often been observed that this energy 
has a relative minimum if a significant fraction 1/~ 
of symmetry translations of one grain are simul- 

0108-7673/87/020232-12501.50 

taneously symmetry translations of the other. The 
lattice formed by the common translations is called 
the coincidence site lattice (CSL), ~ its multiplicity. 
The relative orientation of the two grains can be 
described by a rotation mapping one set of symmetry 
translations onto the other. 

Motivated by investigations into the frequency with 
which different relative orientations of grains occur 
in hexagonal materials, considerable attention has 
been given to coincidence rotations, i.e. rotations 
generating CSL's in hexagonal lattices (Warrington, 
1975; Fortes & Smith, 1976; Bonnet, Cousineau & 
Warrington, 1981; Hag~ge, Nouet & Delavignette, 
1980; Bleris, Nouet, Hag~ge & Delavignette, 1982). 
This last paper, which will be referred to as BNHD, 
uses an axis-angle description in lattice coordinates 
for the rotations, which turns out to be convenient 
for deriving the coincidence rotations. 

BNHD and a recent paper by Hagbge & Nouet 
(1985) have stimulated the present investigation 
because we have found that the two different rules 
proposed for determining the multiplicity ~ do not 
always give the correct result. The main purpose of 
the present investigation is to derive universaEy valid 
methods for determining Y. At the same time, some 
gaps are filled in the derivation of the BNHD method 
to find the coincidence rotations and some arguments 
are simplified. 

Some of the results on coincidence rotations includ- 
ing the first method of determining ~ have already 
been presented without complete proofs in two pre- 
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liminary publications (Grimmer & Warrington, 1983, 
1985). Colleagues have convinced us that a detailed 
derivation of those results would be welcome. We 
have tried to keep overlaps to a minimum without 
forcing the reader to switch back and forth between 
several papers. Examples that were published earlier 
have been omitted; in particular, we refer to earlier 
publications for lists of all equivalence classes of 
coincidence rotations with a given value of the axial 
ratio and a value of 2 less than a given limit. 

Before considering the properties of coincidence 
rotations in §§ 5-8 results are derived which are valid 
for arbitrary rotations, as indicated in the Abstract. 

2. The general rotation matrix in cubic and in 
hexagonal lattice coordinates, hexagonal quadruples 

and quaternions 

It will be shown in this section how the rotation matrix 
expressed in lattice coordinates depends on the axial 
ratio/9 = c~ a of the hexagonal lattice, on the angle 0 
and on the axis of the rotation. 

Any vector of three-dimensional space can be writ- 
ten in the form elx~ + e 2 x 2 +  e3x3 = ex, where e denotes 
a row of basis vectors, x a column of components. 
Two bases will be considered; a cubic basis e consist- 
ing of three mutually orthogonal vectors e~, e2, e3, 
each of length a, and a hexagonal basis e related to 
e by e = e S, where 

S= x/3/2 . (1) 

0 

e~ and e2 have length a, the angle between them is 
120°; e3 has length c = pa and is orthogonal to el and 
e2. 

Consider a fight-handed rotation by an angle 0 = 
2~0 around an axis with cubic components v satisfying 
v 2 + v ] + v 2 = 1. With parameters 

[a, fl, % 6] = + [cos ~o, vl sin ~o, v2 sin ¢, /:3 sin ~o], 

(2) 

the rotation is described in cubic coordinates by a 
matrix Ro of the form [see e.g. Synge (1960) or 
Grimmer (1974a)]: 

[ a2--~- fl 2 -  72 -- 82 

g o = |  2(#r+~6) 
\ 2(/36-,,r) 

2(f l7-  oe6) 2(fig + a'),) \ 
Ot2--f12+72--62 2(y6--afl) ) ;  

2(76+~B) 0/2- f12- "y2+ 62 

(3) 

it transforms the vector e~ into e~:'= eRoS. 
The hexagonal components n of the rotation axis 

are given by e n = e S n = e v ,  i.e. v=Sn:  

vl = n l -  n2/2, v2 = q~n2/2, lJ 3 = p n  3 (4) 

and 

2 2 2 l = v 2 + v 2 + v ~ = n ~ - n l n 2 + n 2 + p  n3. (5) 

Introducing parameters 

(A, B, C, D) = +(cos ~o, nlv/3p sin ~0, 

n2x/~p sin ~o, n3x/~ p sin ~0), (6) 

one obtains from (2) and (4) 

[a,~, 7, 6]=[A,  (B-C/2)/x/ '~p,  C/2p, D/x/3], (7) 

so that Ro becomes 
[3A 2 -  0 2 + r( B 2 -  BC - C2/2) 

11 x / 3 [ r C ( B - C / 2 ) + 2 A D ]  
R ° = 3  k x / 7 [ D ( Z B - C ) - 3 A C ]  

.~/3[ rC( B -  C / 2) - 2AD] 
3A 2 -  0 2 - "r(B 2 - BC - C2/2) 

x/~[  CD+ A ( E B -  C)] 

x/¥[ D(EB - C) + 3AC] 

v / ' ~ [ C D - A ( 2 B - C ) ]  / (8) 
3 A 2 +  D 2 - "r(B 2 -  BC + C 2 ) /  

where 

r = l / p  2. (9) 

Using (6) and (5) one finds that the parameters 
(A, B, C, D) satisfy the normalization condition 

3A2+ D2 + r(B 2 - BC + C 2) 

=3[COS 2 ~pWsin 2 ~p(p2n2+n2-nln2+n2)]=3. (10) 

Expressing the original and rotated vectors in the 
basis e, one obtains e~ = eS- lg  = ex and e ~ ' =  eRo~ = 
eS-IRoSx = eRx, where x = S-1~: and R = S-IRoS, i.e. 

/3A2 + 2AD - D2+ r( B 2 - C 2) 

1 I z C ( 2 B - C ) + 4 A D  
R=-~ \ z [ D ( 2 B - C ) - 3 A C ]  

r B ( 2 C - B ) - 4 A D  
3A 2 - 2AD - D 2 -  z( B 2 -  C 2) 

r [ D ( 2 C - B ) + 3 A B ]  

2 [ B D + A ( 2 C - B ) ]  ) 
2 [ C D - A ( 2 B - C ) ]  . (11) 

3A2+ D 2 - r(B 2 - BC + C 2) 

We summarize: a rotation by an angle 0=2~,  
around an axis with hexagonal coordinates [B, C, D] 
satisfying the normalization condition 

B 2 - B C + f 2 + p 2 D 2 = 3 p 2 s i n 2  ~p (12) 

is given by the matrix R (11), where A = cos ¢. The 
parameters (A, B, C, D),  which (together with r =  
a 2 / c  2) determine R, will be called a (hexagonal) 
quadruple. They satisfy the normalization condition 
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(10). The analogous cubic quadruple [a,/3, % 8] is 
usually called a unit quaternion. 

3. The multiplication law for hexagonal quadruples 

The rotations form a group. Its neutral element is the 
rotation by an angle 0 = 0, described by the quadru- 
ples +(1, 0, 0, 0). If +(A, B, C, D) describe the rota- 
tion n, 0 = 2q~ according to (6), the inverse rotation 
-n ,  0 is described by ( A , - B , - C , - D )  or 
( - A ,  B, C, D). The multiplication law of quadruples, 
which describes the effect of two successive rotations, 
will be derived for the general case where the two 
rotations may be described in crystal coordinate sys- 
tems with different values of c/a. A practical applica- 
tion where this is used is the following: the relative 
orientation of a pair of neighbouring grains was found 
to be (a, b, c, d)r, where r is the measured value of 
the axial ratio. This is approximated by a coincidence 
orientation (A, B, C, D)R of a lattice with R close 
to r. How big is the difference (a,b,  c ,d)r  
( - A , B , C , D ) R ?  

(a b c d)r(A B C D)R 

dD b B - ( b C + c B ) / 2 + c C  
= aA 3 3rR ' 

[ R  B bA ( 2 c - b ) D  d ( 2 C - B ) ]  p ~ + - - +  
r 3r 3R ' 

[a_C R cA ( 2 b - c ) D  d ( 2 B - C ) ]  p + - -  + 
r 3r 3R ' 

bC - cB~ 
aD+dA4  2~-R ]p" (13a) 

This formula was obtained by replacing the quadru- 
ples on the left-hand side by quaternions according 
to (7), applying the law of quaternion multiplication 
[e.g. equation (3) in Grimmer (1974a)] and changing 
back to hexagonal quadruples. Equation (13a) sim- 
plifies in the special case r = R = p  to 

(a b c d ) ( A  B C D) 

= ½ ( 3 a A - d D - r [ b B - ( b C  + cB)/2 + cC], 

3aB + 3bA + ( 2 c -  b ) D -  d(2C - B), 

3aC + 3 c A -  (2b - c)D+ d(2B - C), 

3 [aD+dA+r(bC-cB) /2] ) .  (13b) 

4. Equivalent rotations; choice of a representative in 
each equivalence class 

Consider a pair of neighbouring grains of the same 
hexagonal phase. The relative orientation of their 
lattices can be described by different rotations: if R 
is a rotation that turns lattice 1 parallel to lattice 2 

then any of the 12 symmetry rotations Si followed by 
R, i.e. R'= RS,, i = 1 , . . . ,  12, has the same effect as 
R. The rotation may be expressed also in a symmetry- 
equivalent basis, R ' =  SflRSj, and either lattice may 
be taken as lattice 1. Up to 2× 122=288 different 
rotations R ' =  s j l  RSk and R'  = s j l  R-1Sk are 
obtained in this way. They were called (hexagonally) 
equivalent by Grimmer (1980), who showed that the 
number N of different rotations in any (hexagonal) 
equivalence class is a divisor of 288 and a multiple 
of 12, i.e. w-- N/12 is always an integer dividing 24. 
An example with w-- 1 is the equivalence class con- 
sisting of the 12 hexagonal symmetry rotations (i.e. 
the elements of the group 622).* Consider one of the 
24 stereographic triangles (ST) into which the sphere 
is divided by mirror planes of the group 6 /mmm and 
consider the equivalent rotations with angle -<180 ° 
and axis in the interior or on the surface of this 
triangle. Each ST contains the same numbers of 
equivalent rotations with the same rotation angles. If 
an equivalence class contains 288 rotations, each rota- 
tion will have an angle < 180 ° and an axis in the 
interior of a ST. The maximum number of equivalent 
rotations with axis in or on the surface of a given ST 
is 12: the maximum number of different rotation 
ang!es in an equivalence class is also 12. 

Grimmer (1980) gave also the relations between 
the quaternions corresponding to the rotations in an 
equivalence class. These relations between equivalent 
quaternions can be translated into relations between 
equivalent hexagonal quadruples by means of (7). 
Table 1 gives 12 quadruples representing the different 
rotation angles that occur in an equivalence class.t 
The 2x  288 = 576 equivalent hexagonal quadruples 
are obtained from those in the table by arbitrary 
combinations of the following four operations: (a) 
sign change of the first component; (b) sign change 
of the fourth component; (c) interchanging the 
second and third components; (d) replacing the 
second and third components B, C by B - C ,  B. 
Applying this repeatedly one obtains ( B , C ) ~  
( B - C ,  B) ~ ( - C ,  B - C ) ~ ( - B , - C ) ~ ( C - B , - B )  
~(C, C-B)->(B, C). 

Quadruples connected by these operations corre- 
spond to rotations with the same angle and with axes 
related by symmetry operations of the hexagonal 
lattice: (a) inversion, (b/c) reflections in planes per- 
pendicular/parallel  to the sixfold axis, (d) 60 ° 
rotation. 

Using the connection between equivalent quadru- 
ples one finds that one and only one quadruple in 

* This definition of equivalence is appropriate for our purpose 
of dealing with coincidence site and DSC (dislocation shift com- 
plete) lattices. It may not be appropriate to classify the possible 
atomic arrangements in a bicrystal if the symmetry of the crystal 
structure differs from the lattice symmetry. 

t A similar table was given by Hag~ge & Nouet (1985). 
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Table 1. 12 equivalent quadruples representing the 
different rotation angles that occur in an equivalence 
class, obtained by letting operators I, J, K, L act on 

the quadruple q = ( A, B, C, D)  

q ( A B C D ) 
Iq ( [ A + D ] / 2  B C [ 3 A - D ] / 2  ) 
Jq ( [D-A]~2 B C [3A+D]/2 ) 

Kq (1/x/J)( D B - 2 C  2 B -  C 3A ) 
IKq (l/x/3)( [3A+D]/2 B - 2 C  2 B - C  3[D-A]~2 ) 
Jgq (1/v'~)( [3A-D]/2  B - 2 C  2 B - C  3[A+D]/2 ) 

Lq p( [B-C]~'/2 A + D  2A [B+C].r/2 ) 
ILq p( B~'/2 A + D  2A [B-2C]~'/2 ) 
JLq p( Cz/2 A + D  2A [2B-C].r/2 ) 

KLq (p/x/~)( [B+C]r/2 D - 3 A  2D 3[B-C]z /2  ) 
IKLq (p/x/3)( [ 2 B -  C]z/2 D - 3 A  2D 3Cz/2 ) 
JKLq (p/x~3)( [B-2C]'r/2 D - 3 A  2D 3Bz/2 ) 

each equivalence class satisfies the conditions* 

B_>2C___0, D>__0 (14) 

A>_crB/2, A > _ c r ( 2 B - C ) / x / - ~ ,  

A >-(E/v/3+ l ) D  (15) 

D < - t r ( B - 2 C ) / 2  if  A = t r B / 2  (16a) 

D<-v/3trC/2 if A = t r ( 2 B - C ) / v c i - 2  (16b) 

B_> (2+x/3)C i fA = (2/v/3+ 1)D. (16c) 

Equation (14) chooses among equivalent rotations 
one with axis in the standard stereographic triangle, 
(15) one with rrfinimum rotation angle. If there are 
several such rotations, (16a)-(16c) will make a 
unique choice. 

A quadruple satisfying (14)-(16) will be called 
the representative quadruple {A, B, C, D} of its 
equivalence class, the corresponding rotation the rep- 
resentative rotation. A rotation that corresponds to a 
quadruple satisfying (14) and (15) is usually called 
a disorientation. 

Table 2 gives for each equivalence class a number 
of properties that are determined by the form of its 
representative quadruple. This quadruple is given 
there with a first component equal to 1. To 
obtain the normalization condition (10), each of 
the four components {1, b, c, d} has to be divided 
by [ 1 + (b 2 -  bc + c 2 ÷ f12d2)/3f12]U2. 

In Appendix A, Table 2 is expressed in the language 
of orthogonal coordinates and quaternions, which 
shows how the first three columns of the table follow 
from Figs. 2 and 3 in Grimmer (1980). 

5. Coincidence rotations 

We restrict our attention from now on to rotations 
that generate a three-dimensional lattice of coin- 
cidence sites. A rotation is of this type if and only if 
its matrix R expressed in lattice coordinates is 

* Gr immer  (1980) derived restrictions on quaternions equivalent  
to (14)-(16);  restrictions on quaternions  equivalent  to (14), (15) 
were derived independent ly  also by  Bonnet  (1980). 

rational, i.e. has only rational matrix elements 
(Warrington, 1975; Grimmer, 1976). From the 
algorithm for matrix inversion it follows that R -1 is 
rational if and only if R is rational. R -~ is obtained 
by replacing A by - A  in (11). We shall denote the 
elements of R by R +, the elements of R -1 by R~. It 
follows from 01)  and (10) that 

4A 2= 1 + g l  + + R~2÷ R~3 (17a) 

4 A B  + =R13-R- (3 -2R~3+2R23  (17b) 

4AC=2R~(3_2R-(3_  + R23+ R23 (17c) 

4 A D  = 3( R-~1- R-(1) (17d) 

4 B D  = 3( R~(3 + R?3) (17e) 

4 C D  = 3( R~3 + R23) (17f) 

4D 2 3(1 R1+1 R~2+ + = - - R33) (17g) 

~'B 2 1+R1+1 R~-2- + + = -- R 3 3 ÷ R 1 2  (17h) 

2TBA + = R 3 2  - R 3 2  (17i) 
+ 

2zBD=ER-~l+ER31+R32+R32 :.' (17j) 
+ + 

2~'BC = 1 - R3+3 + 2R 12 + 2Ral (17 k) 

2~'AC = R31 - R3+~ (17l) 

2zDC=R3+~+R31+ER-~2+2Ra2 (17m) 
+ + + 

zC 2= 1 -RI+IWRE2-Raa÷R21 . (17n) 

Since the right-hand sides of (17) are rational, it 
follows for irrational r from (17b, i) that A B  = 0, from 
(17c, I) that A C - - 0 ,  from (17e, j)  that B D - - 0 ,  from 
(17f, m) that C D  = O, i.e. either A = D -- 0 or B = C -- 
0. If A ~ 0, one obtains from (17a)-(17d) that there 
exists a number k ~ 0 and four coprime integers m, 
U, V, W such that 

A 2=km, A B - k U ,  A C = k V ,  A D = k W .  (18) 

'Coprime' means that the greatest common divisor 
of the integers equals 1, i.e. 

g.c.d.(m, U, V, W)=  1. (19) 

From (18) and (10) one obtains 

km = A 2 --  A 2 1 3 A 2 +  D E +  ~ ' (B  2 -  BC + C 2 ) ] / 3  

= k213m 2 + W E + z( U 2 -  U V +  V2)]/3 = kEs, (20) 

where 

s = [3 m E + W E + ~'( U 2 - U V  + V 2)]/3. (21) 

It follows that k = m/s ,  whence A 2= mE/s and 

A =  m / x/-s, B =  U / v/-~ , C = V / v/-s, D =  W / x/-s. 

(22) 

Equation (22)with  m, U, V, W satisfying (19) 
remains true also if A -  0. This follows from (17h)- 
(17k) if B # 0 ,  from (17k)-(17n) if C # 0 ,  from 
(17d)-(17g) if D ~ 0 .  A = B - C = D = 0  is not 
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Table 2. Some properties of an equivalence class that are determined by the form of its representative quadruple 

n = 12w is the number of different rotations, nl8o the number of 180 ° rotations in the class. The column * indicates (for w < 24) the 
conditions (16a)-(16c) that are satisfied. 

w Representative quadruple * n~8 o 
1 {1,0,0,0} 7 
1 {1,0, o, 24~-3} c 6 
2 {1,0,0, d}, 0< d < 2 v ~ - 3  12 
3 { 1, 2p, O, 0} a 6 
3 {1, v~p, 0, 0} b 6 
6 {1,2c, c,O},O<c<p 12 
6 {1, b,O,O},O<b<q'3p 12 
6 {1,20, 2(2-,,/3)p, 2 ~ - 3 }  abc 0 

,_f< 2p = ~ a  12 {1, b,c,O},O<2c<o,[<,,/~p+c/2 ~ b  12 

12 {1, b,O,d},O<b<,J3p, O<d<<-2V~-3 = ~ c  12 
12 {l, 2c, c, d}, O<c< p, O< d <2 , f3 -3  12 
12 {1,2p, p ( 1 - d ) ,  d}, O< d <2x/3-3 a 0 
12 {1, p(.f3+x),2px,.,/'3x}, 0< x <2-vc3 b 0 
12 {l,b, ( 2 - v % b ,  2.,/3-3}, O<b<2p c 0 
24 All other representative quadruples 0 

Axes of  180 ° rotations in the SST 

1,o,o;2,1,o;o,o, 1 
1,2-4~,o 
3+d, 2d, O;2,1-d,O 
p,O, 1 
2p, 0, ,/3 
c,O, 1; p", O, c 
2b, b, 3; 202, p 2, b 

2 b - c , b - 2 c ,  3 

2p 2, 02(1 - d ) ,  b 
02(3 + d), 202d, 3c 

possible because of (10). Substitution of  (22) into 
(11) gives 

3mZ+2mW W2+ r( U 2 -  V 2) 
1 rV(2 U - V) + 4m W 

g = 3 - ~  r [ W ( 2 U -  V ) - 3 m V ]  

rU(2  V -  U) - 4m W 
3m 2 - 2 r o W -  W E- r( U 2-  V 2) 

r [ W ( 2 V - U ) + 3 m U ]  

2 [ U W + m ( 2 V - U ) ]  ) 
2 [ V W - m ( 2 U - V ) ]  , (23) 

3m2+ W 2 - r ( U  2 -  UV+ V 2) 

where 

m = W = 0 or U = V = 0 if  r is irrational. (24) 

Equations (23) and (21) show that the condit ions 
(19) and (24) are also sufficient to guarantee that R 
is rational,  i.e. that R describes a coincidence rotation. 
Coincidence  rotations can therefore be denoted by 
quadruples  (m, U, V, W) consisting of four coprime 
integers. To obtain this result we have replaced the 
normal izat ion condit ion (10) by (19). The expressions 
[B, C, D] for the axis and cos ~o = A for the half-angle 
of the rotation become now [ U, V, W] and cos ~o = 
m/x/-s, i.e. 

3m 2 ]1/2 
cos~o= 3m2+ W 2 + r ( U Z _ U V +  V2) j . (25) 

It follows that 

]1/2 "I'( U 2 - UV--1- V 2) -~- W 2 

tan ~p = 3 m -----5 

= [ ' / ' ( U 2 - - N D - I - D 2 ) d - W 2 ]  1/2 n 

3 m'  
(26) 

where 

n = g.c.d.( U, V, W), 
(27) 

u = U / n ,  v= V/n, w= W/n. 

From (27) it follows that 

g.c.d.(u, v, w ) =  1 (28) 

and [because of  (19)] that 

g.c.d.(m, n) = 1. (29) 

We conclude that a coincidence rotation is a rota- 
tion about a lattice vector [u, v, w] by a half-angle q~, 
the tangent  of  which is the product of  an arbitrary 
rational number  n~ m t imes the quanti ty {[ r( u 2 - uv + 
v 2) + w2]/3} 1/2, which is proport ional  to the length of 
the vector [u, v, w].* An addit ional  restriction is 
imposed on coincidence rotations by (24) if  ~- is not 
rational. Then a coincidence rotation is either (m = 
W = 0) a 180 ° rotation around a lattice vector perpen- 
dicular  to the sixfold axis or (U  = V = 0) a rotation 
around the sixfold axis with a rational value for 
x/'3 tan ~o. Equat ions (23) and (21) show that R does 
not depend  on r i f  U =  V = 0  or m = W = 0 .  The 
coincidence rotations for irrational r are therefore 
the same for each value of ~" and they coincide with 
those coincidence rotations for any rational values of  
r that satisfy U = V = 0 or m = W = 0. 

If r is rational,  then there exist positive integers 
/z, u satisfying 

v /~  = r (30) 

g.c.d.(/z, v ) =  1. (31) 

If  we set 

F=3lzs=lx(3m2+ W2)+ v(U 2-  UV+ V2), (32) 

* Fortes (1977) gave a similar characterization for coincidence 
rotations in arbitrary lattices. 
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(23) becomes 
1 / I z ( 3 m 2 + 2 m W -  W 2 ) + v ( U 2 -  V2) 

vV(2 U - V) + 4/zm W 
R = - ~  v[ W ( 2 U -  V ) - 3 m V ]  

vU(2 V -  U ) - 4 1 ~ m W  
t x ( 3 m 2 - 2 m W  - W 2 ) -  v (U  2 -  V 2) 

v [ W ( 2 V - U ) + 3 m U ]  

2 t z [ U W + m ( 2 V - U ) ]  ) 

2 1 ~ [ V W - m ( 2 U -  V)] . 
/x(3m2+ W2) - v ( U  2 -  UV+ V 2) 

(33) 

The elements of the matrices r +=  F .  R and r - =  
F .  R -~ are integers because /z, v, U, V, W and +m 
are integers. From (27) one can see that (33) is 
equivalent to equation (25) in BNHD and to equation 
(5) in Delavignette (1982). The additional parameter 
a in their equations stresses the fact that the elements 
of the matrix r may have a factor in common. 

If one multiplies both sides of (17) by F = 3/zs and 
±= FR~ one obtains with (22) and (30): defines r U 

+ + (34a) 12/zm 2 = F +  r~ + r~-2+ r33 

+ m 121zmU= r13 r-~3-2r+3+2r23 (34b) 

12tzmV 2r~-3- 2r73- + -" r23 + r23 (34c) 
+ 

4tzm W = rn - r-{1 (34d) 
+ 

41zUW = r13 + r-(3 (34e) 
+ 

4/, VW = r23 + rf3 (34f) 

+ m + + 4/zW 2 = F -  rll r22+ r33 (34g) 

+ - + rf3+r~2 (34h) 3vU 2--- F +  rll r22- 
+ 

6 rUm = r32 - r32 (34i) 
+ 

6 v U W  = 2r3+1 +2r31 + r32+ r32 (34j) 

+ + 2r~2 + 2r+l (34k) 6vUV = F -  r33 
+ 

6 v m V =  r31 - r31 (34/) 

6 v W V =  r~l+ r31+2r-~2+2r32 (34m) 
+ + + 

3vV2=F-r l l+r22-r33+r-~ l  . (34n) 

6. The multiplicity ~ of the CSL generated by R 

Because the computation of ~ is the central theme 
of this paper, we shall digress for a moment in order 
to place it in a more general context. Consider a 
boundary between two arbitrary phases. If b 1 and b 2 
are bases of  the corresponding lattices and v~ and v2 
the volumes of primitive cells, one can write 

b 2 = b ~ T and 1) 2 = II TI101, 

where II TII denotes the absolute value of the deter- 
minant of the matrix T. Grimmer (1976) showed that 
the two lattices have a CSL in common if and only 

if T is rational. The volume v of a primitive cell of 
the CSL can be written as 

v = ~I Vl = ~2V2, 

where ~2 is the lowest positive integer such that E2 [[ T[I 
is an integer and that 22 T and ~2[J TH T-I  are integral 
matrices, ,~1 = [ITII~;2 [Fortes (1983); see also Yang 
(1982)]. If T is the matrix R of a rotation (more 
generally if [] TII - 1) it follows that ,~  = -~2 = 2 is the 
least positive integer such that 2 R  and ,~R -~ are 
integral matrices (Grimmer, 1976). ,~ is then the 
lowest common multiple of 2 '  and ,~", 

= l .c.m.(~' ,  2") ,  (35) 

where 2 '  and ,~" denote the lowest common 
denominators of the matrix elements of R and R -1 
respectively. In the case of orthonormal axes, R -~ is 
the transpose of R, i.e. ,~ = E ' =  2 "  for the primitive 
cubic lattice.* 2 ' =  2 "  is not necessarily true for rota- 
tions expressed in terms of hexagonal axes. The 
implicit proposal (Warfington, 1975; BNHD) that 
2; = 2;' for hexagonal lattices is not always correct; 
examples to the contrary have been given by Grimmer 
& Warrington (1985). 

Because r+=FR and r - = F R  -1 have integral 
matrix elements, it follows that ,~', E" and ~ are 
factors of F, i.e. there exist integers a ' ,  a"  and a such 
that 

F = a'~, '= a"~,"= a~. (36) 

Equations (34a, h, n, g) show that a '  is a factor of 
12/zm 2 , 3 vU 2 , 3 vV 2, 4Ix W 2. It follows because of (19) 
that a '  is a factor of 12/,1, i.e. ~,' is a multiple of 
F/121zv. 

Consider the case /z and v odd, a '  even (i.e. all 
the r~j are even). The expression for r~-2 in (33) shows 

+ 
that U is even, the one for r2~ that V is even. The 

+ 
expression for r33 shows then that 3m2+ W 2 is even, 
i.e. m and W are both odd or both even. The latter 
is not compatible with (19). Equation (33) shows then 
that all the r~ are multiples of 4. We conclude that 
a '  has the form 

a '=  fly, (37) 

where/3 = 1, 3, 4 or 12 and y is a factor of/zv.  This 
remains true even if/z and v are not both odd because 
(37) is then equivalent to the statement that a '  is a 
factor of 12/zv. Equation (37) corresponds to equation 
(26) in BNHD. The proof  presented above is more 
direct than the one given in the Appendix of BNHD. 

The properties proved for a '  can be proved 
similarly for a" because (34a, h, n, g) remain true on 
replacing r~ by r~. It follows that (37) remains true 
for a" and a and also that ~"  and 2; are multiples 

* A given rotation leads to the same value Z for f.c.e, and b.c.c. 
lattices as for the primitive cubic lattice. 
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of F/12tzv.  Because a is a divisor of F [see (36)] 
and of the r~, it follows from (34a ) - (34d)  and (19) 
that* 

and similarly that  

a l l2 /zm (38a) 

~14~w (38b) 
a l 6 v U  (38c) 

,~16vv, (38d) 

which give because of  (19) an alternative proof  that  

all2/xv. (39) 

7. A simplified procedure to compute 2~ 

Many calculations involving coincidence rotations 
can most easily be performed by using the quadruple  
description of  the rotations. To determine 2 accord- 
ing to the method  given in § 6, however, one has to 
return to the matrix description by determining first 
the two matrices R and R -~ and then comput ing 
as the lowest positive integer such that ~ R  and 2 R - l  
are integral matrices. 

Hag~ge & Nouet  (1985) proposed a set of rules for 
comput ing a = F/ ,~  as a function of /z ,  v, m, n, u, v 
and w without  passing through R and R -1. They 
tested their rules on many  examples but did not give 
a p roof  of  their  general validity. The aim of the present 
section is to show that  there are certain cases where 
their rules do not give the correct result and to propose 
as a theorem a modified procedure,  which is even 
somewhat  simpler. 

If  we write ~ = F/o~, where F is given by (32) as 

F = / z ( 3 m 2 +  W2)+ v( U 2 -  U V +  V2), 
a can be computed  as follows. 

a-hex  theorem 

O1~ = Of 1 0 ~ 2 0 ~ 3 0 ~ 4 ,  (40) 

where 

al  = g.c.d.(12, 3m2+ W 2, U 2 -  U V +  V2), (41) 

O~ 2 is the greatest common divisor of /z ,  3 U and 3 V 
satisfying 

a~13( U 2- UV + V2)/a~, (42) 

a3 = g.c.d.[4, v, (3m2+ wE)/ t r l ] ,  (43) 

and a4 is the greatest common divisor of  v /a3 ,  W 
and m satisfying 

aEl(3m 2 + W2)/otla3. (44) 

* glh where g and h are integers and g # 0 means that h is an 
integral multiple of g; g.rh means that h is not an integral multiple 
of g. 

The following examples illustrate the applicat ion 
of  the theorem: 

(1) (m, U, V, W ) = ( 1 , 4 , 2 , 3 )  
oq = 12, O~ 2 = a 3 : a 4 = 1 
a = 12 for any values of tz and v. 

(2) (m, U, V, W ) = ( 5 , 2 , 1 , 5 )  
~ a l =  1, a2 =g.c .d . (3 , /z ) ,  o~3=g.c.d. (4, v), 

Of 4 = g.c.d. (5, u) 
--> a = g.c.d. (3,/x) x g.c.d. (20, v). 

(3) (m, U, V, W ) = ( 2 , 3 ,  1,2) 
-> a l  = ce2 = 1, a 3 = g.c.d. (4, v), 

a4 = g.c.d. (8, v) /a3  
o~ = g.c.d. (8, v). 

Notice that  a as given by the theorem satisfies (39) 
because a~]12 , a2J/z and o~3a4lv. Being an integer, c~ 
can be written in exactly one way in the form 

a = k12k23 k~, (45) 

where the ki are integers and 

g.c.d.(6, k l ) - -  1. (46) 

The p roof  that the theorem gives kl correctly is 
rather simple but the proofs that it also gives k2 and 
k3 correctly are more involved. The latter proofs will 
be given in outline here and in detail in Appendix  B. 
Each of  these three proofs consists of  two parts: (a)  
The numbers  ki given by the theorem are not too 
large, i.e. kl,  2 k~ or 3 k~ divide all the r o. (b) The 
numbers  k~ are not too small, i.e. if the li are integers 
such that ll, 2~ or 3 t3 divides all the r~ then l~lkl, 
12 <- k2 or 13 -< k3. 

( l a )  kl is not too large. Define 

/3 = g.c.d. (/z, U, V) (47) 

and 

), = g.c.d. ( v, m, W). (48) 

Equat ion (33) shows that each term in each of  the 
:t: 

18 numbers  rij contains at least one of  the factors 
/x, U, V and at least one of  the factors v, m, W. It 
follows that  fly]all r~ (i.e. that/3),  divides all the r~). 
The theorem shows that  kl has the form 

kl = 131Yl, (49) 

where 131 is the largest divisor of /3 satisfying 
g.c.d. ( /31 ,6)=  1 and where )'l is the largest divisor 
of  )' satisfying g.c.d. (3 ,1 ,6)= 1. Because kl]/37 it 

+ 
follows that  kl]all r e. 

( lb )  kl is not too small. Let ll be an integer with 

g.c.d. (ll ,  6 ) =  1 (50) 

that divides all the r~. Because of (39) and (31) one 
can write 

11 = bc, (51) 
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where 

and 

Because 

b = g.c.d. (l~,/z) (52) 

c = g.c.d. (l~, v). (53) 

of (31) one has g.c.d. (b, v ) =  
g.c.d. (c,/z) = 1. From (38) it follows then that bl U, 
bl V, clm, cl W. These together with (52) and (53) show 
that bl/3~ and cly~. It follows from (51) and (49) that 
lllkl. 

(2a) k2 is not too large. Let k be the number of 
factors 2 in /3y defined by (47), (48). The theorem 
gives for k2:k2 = k except for the cases ( a ) - ( d ) ,  where 
k2 = k + 2  i f (a )  or (b) is satisfied, k2 = k +  1 otherwise: 

(a) 2kll~,2k+~lu, 2k+llV, m a n d  W odd 
(b) 2k+EIv , 2kl m, 2kl W, 2k+llm+ W 
(c) 2kl~, 2kl U, 2kl v, m and W odd, k > 0  
(d) 2k+~l~, 2kl m, 2~1 W, 21m+ W. 

That 2klall r~ has been shown in ( l a ) ,  that 
2k+21all r~ if (a) or (b) is satisfied and that 
2k+llall r~ if (c) or (d) is satisfied follows from (33). 

(2b) k2 is not too small. Making use of (19), (38) 
and (34h, n) one finds: 2k+31not all r~, 2k+21all r~ only 
if (a) or (b) is satisfied, 2k+llall r~ only in the cases 
(a ) - (d ) .  

(3a) k3 is not too large. Redefine k to be the number 
of factors 3 in/3y defined by (47), (48). The theorem 
gives for k3:k3 = k except in the following three cases, 
where k3 = k + 1: 

(a) 3klv, 3klm, 3k+'lW, 3 1 U + V  
(b) 3kllz, 3k[ U, 3kl V, 31W. k > 0 
(c) 3k+ll/.q3klu , 3klv, 3~+11U+ V. 

That 3klall r~ has been shown in ( l a ) ,  that 
3k+llall r~ if one of the conditions (a ) - (c )  is sat- 
isfied follows from (33). 

(3b) k3 is not too small. Making use of (19) and 
± k + l  ± • (38) one finds: 3k+EInot all ro, 3 lall r o only if one 

of the conditions (a ) - (c )  is satisfied. 
It is easy to see that the theorem can be written in 

the following simpler form if g.c.d. (/z, 6) = 1 and 
g.c.d. (v, 6 ) =  1. 

Corollary 1 

If g.c.d. (/~u, 6) = 1 then 

a = al/3y, (54) 

where 

a l=g .c .d .  (12,3m2+ W 2, U 2 -  UV-1 t" V 2 ) ,  (41) 

/3 = g.c.d. (/x, U, V), (47) 

y = g.c.d. ( v, m, W). (48) 

An example is (m, U, V, W) = (4, 1, 0, 1),/z = 1, v = 
7, where 01~ 1 = f l - - ' y  = 1, i.e. Z = F =  56. The rules of 
Hag~ge & Nouet (1985) give in this case a = a~ = 7, 
i.e. 2; = 8, which is not correct. 

Let us consider two other special cases of the 
theorem: U = V = 0 a n d  m -- W = 0. If U = V = 0 then 
oq = g.c.d. (12', 3m2+ W2), a2 =/z. a4 = 1 because (19) 
gives g.c.d. (m, W)--1 ,  from which it follows also 
that g.c.d. (3m2+ W 2, 8) = 1 or 4. (3m2+ W2) /a l  is 
odd in both cases, i.e. o1~ 3 = 1. It follows that a =/z  
xg.c.d. (12, 3m2+ W2). ~ , = F / a = ( 3 m 2 +  wE)~ 
g.c.d. (12, 3m2+ W2). We conclude that: 

Corollary 2 

If U = V = 0 then 

3m2+ W 2 
Z =  

g.c.d. (3, W) x [g.c.d. (2, m + W)]2" 

If m = W = 0  then g . c . d . ( U , V ) = l  because of 
(19). It follows that U 2 -  UV--~-V 2 is odd. From 
g.c.d. ( U, V) = 1 it follows also that 94" U 2 -  U V +  V 2 
and that 31U 2 -  U V +  V 2 if and only if 31U + V. It 
follows that oq = g.c.d. (3, U +  V), a2 = 1, a3 = g.c.d. 
(4, v,), a4= b'/0~3, i.e. 0/30~4--~ v and a = v x 
g.c.d.(3, U +  V). Z = F / a = ( U 2 - U V +  V2)/g.c.d. 
(3, U +  V). We conclude that: 

Corollary 3 

If m =  W = 0  then 

U 2 -  UV'-~ V 2 
Z =  

g.c.d. (3, U +  V)" 

Corollaries 2 and 3 show that ~ does not depend 
on/z and v and hence on z if U = V = 0 or m = W = 0. 
They remain true even if z is irrational. 

8. D e t e r m i n a t i o n  o f  b a s e s  f or  the  C S L  and  D S C  
la t t i c e s  g e n e r a t e d  by  R 

If the relative orientation between two grains with a 
common boundary deviates by only a few degrees 
from a coincidence orientation with a low value of 
Z, then it has often been observed that the deviation 
from exact coincidence is compensated by arrays of 
dislocations in the boundary. Bollmann showed that 
the Burgers vectors of such grain boundary disloca- 
tions are vectors of a lattice, which he called the 
'dislocation shift complete lattice', abbreviated as 
DSC lattice or DSCL [see e.g. Bollmann (1970, 
1982)].* To analyse experimentally observed boun- 
daries and their dislocation arrays, it is therefore 
important to have a convenient algorithm for deter- 
mining CSL's and the corresponding DSCL's. The 

* The Burgers vectors are vectors of small length of the DSCL 
because the energy of a dislocation is proportional to b 2. 
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connection between these two lattices and a con- 
venient algorithm to determine bases for both will be 
given in this section. 

The hexagonal lattice formed by the translation 
vectors with integral components in the basis e = (el, 
e2, e3) will be called lattice 1, the rotated lattice with 

I integral components in the basis eR = e '=  (e~, e2, eL) 
will be called lattice 2. The CSL is the lattice formed 
by the vectors that belong simultaneously to both 
lattices, i.e. by the vectors with integral components 
in both bases. The DSCL is the lattice formed by the 
vectors that are a sum of a vector of lattice 1 and a 
vector of lattice 2. 

If V, Vc and Vo denote the volumes of primitive 
cells of lattice 1, the CSL and the DSCL respectively, 
then one has Vc = VE and Vo = VIE. The latter result 
was proved by Bonnet & Durand (1975) and by 
Iwasaki (1976). Grimmer (1974b) established a 
reciprocity relation between CSL and DSCL. Bonnet 
(1976) presented a convenient method to determine 
bases for the CSL and the DSCL. His method can 
also be used to determine ,~. If 2 is known from the 
a-hex theorem, his method can be further simplified. 

(1) Determine N~ > 0, the lowest integral factor of 
such that N~Ri+~, i = 1, 2, 3, are integers, o 
(2) Determine n~2 and N2, where N 2 > 0  is the 

lowest integral factor of ~,/NI such that n~2Ri+~+ 
NERO, i -- 1, 2, 3, are integers for a suitable choice of 
the integer tilE in the range 0 _  < n~2< N~. 

(3) Compute N3 = Z~ N~ N2. 
A basis for the CSL is obtained as follows: deter- 

mine the integers n~3 and/123 satisfying 0-< n~3 < N~ 
and 0 <  n23< N2, for which nl3R~+ n23R[2+ N3 R+ - -  i 3 ,  

i = 1, 2, 3, are integers. A basis for the CSL is then 
C ! C t C given by el = N~e,, e2 = n~2e~ + N2e~, e3 = 

I ! ! n13el + n23e2 + N3e3. 
A basis for the DSCL is obtained as follows: com- 

pute the internal coordinates* of the vectors n~e', + 
n2e~+ n3e~, where the ni are integers satisfying 0<_ 
n~ < N~ for i = 1, 2, 3. Determine among these E trip- 
lets of internal coordinates 

(a) the one of form (k~ ,  0, 0) with the least k~ > 0 
(if there is no such triplet then e~=e~ and k ~ =  1, 
otherwise e~- -  kllel); 

(b) the one of form (k~2, k22, 0) with the least 
k 2 2 >  0 and 0 < - kt2< k~ (if there is no such triplet 
then e~' = e2 and k22 = 1, otherwise e~ = k,2e~ + k22e2); 

(c) the one of form (k~3, k23, k33) with the least 
k 3 3 > 0  , O<-kla<kll and 0 - < k E 3 < k 2 2  (if there is no 
such triplet then e~ = e3, otherwise e~ = k lae l  + k23e2 + 
ka3e3). 

Another method of determining a basis for the 
DSCL has been proposed recently by Bleris, Doni, 

* The triplet of non-negative numbers less than 1 obtained by 
adding appropriate integers to the components u of a vector 
expressed in the basis e is called the internal coordinates of the 
vector. 

Karakostas, Antonopoulos & Delavignette (1985). 
Let us consider the same example (tz = 8, 1, = 3, m = 7, 
U = V -- 0, W = 3) as they do to illustrate our method 
and to compare it with theirs. Corollary 2 gives 2 = 13, 
(33) gives 00) 

R 13 0 13 

N1 = 13, whence N2 = N3 = 1. n12 = 10. Determination 
of the CSL: hi3 = n23 = 0. Using the fact that e' is given 
by the columns of R, we obtain 

e c = 6 . 

0 

Determination of the DSCL: the internal coordinates 
of nle'l, 0 -  nl < 13 are (i24680,235791i) 

1 7 1 8 2 9 3 10 4 11 5 12 . 

0 0 0 0 0 0 0 0 0 0 0 

It follows that 

('i 4 °0) e ° = 1  1 . 

13 0 13 

This procedure is more efficient than the one pro- 
posed by Bleris, Doni, Karakostas, Antonopoulos & 
Delavignette (1985). 

HG is grateful for stimulating discussions with Dr 
S. Hag6ge on methods of computing 2. D H W  is 
grateful for support by NATO grant 1650. 

APPENDIX A 
Table 2 expressed in orthogonal coordinates 

Grimmer (1980) gave the number N of rotations in 
a hexagonal equivalence class in Figs. 2 and 3, where 
he used a normalized orthogonal coordinate system 
with z axis parallel to the sixfold symmetry axis and 
x axis parallel to a twofold symmetry axis. The infor- 
mation on N = 12w contained in those figures is com- 
pleted in Table 3. Since 180 ° rotations are often used 
to describe twins, the number n~80 of 180 ° rotations 
has been included as well as the axes of those that 
lie in the standard stereographic triangle (SST) 
defined by x -> v~y -> 0, z -> 0. 

A comparison of Tables 3 and 2 shows that the 
results look somewhat simpler in Table 3, which is 
no surprise because hexagonal equivalence does not 
depend on the value o f p  = c/a, i.e. p appears in Table 
2 only because the results are expressed there in 
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Table 3. Table 2 expressed in orthonormal coordinates 

w Representat ive quaternion * n18 o 

1 {1,0,0,0} . 7 
1 {1,0, 0, 2-vc3} c 6 
2 {1, 0, 0, d}, 0<  d < 2 - x / 3  12 
3 {1, v/3/2, 1/2, 0} a 6 
3 {1, 1, 0, 0} b 6 
6 {1, vr3c, c,O},O<c<l/2 12 
6 {1, b, 0, 0}, 0 < b < l  12 
6 {1, 1, 2-x/3, 2-vr3} abc 0 

{l'b'c'O}'O<x/3c<b f~<-(E-c)/v~l.-<l =~ba 12 12 

12 {1, b,O,d},O<b<l,O<d<-2-.v/3 =-+c  12 
12 {1, x/3c, c ,d} ,O<c<l /2 ,0<d<2-x /3  12 
12 {1, (v~+ d)/2, (1 -v~d) /2 ,  d}, 0 < d < 2 - v ~  a 0 
12 {1, 1, d, d}, O < d < 2 - x / 3  b 0 
12 {I, b, (2-x/3)b, 2-x/3}, 0 < b < I c 0 
24 All other representative quaternions - 0 

Axes o f  180 ° rotations in the SST 

1,0,0; v~, 1, O; O, O, 1 
1, 2 - v %  0 
1, d, 0; vr3+ d, 1-vC3d, 0 
1, 0, 1 
vC3, 1,2 
2c, 0, 1; 1, 0, 2c 
x/3b, b, 2; vr3, 1, 2b 

x/3b+ c, b-vr3c, 2 

x/'J+ d, 1-x/3d, 2b 
1, d, 2c 

hexagonal lattice coordinates, which depend on p. 
These latter coordinates have been used in the bulk 
of the paper because they are much better suited to 
deal with coincidence rotations. 

A P P E N D I X  B 
Details  of the proof of the a -hex  theorem 

B1. Introduction 

a can be written in the form 

a = k12k~3 k3, (45) 

where k~ contains the factors different from 2 and 3. 
It was shown in § 7 that k, is given correctly by the 
a-hex theorem and an outline was given of the proofs 
that k2 and k3 are determined correctly by the a-hex 
theorem. These proofs will be given here in detail. 
Each of them consists of three steps: (1) k, (n = 2 or 
3) as given by the theorem is expressed in terms of 
k, the number of factors n in fly, where 

/3 = g.c.d. (/z, U, V) (47) 

and 

y = g.c.d. ( v, m, W). (48) 

(2) k, is not too large, i.e. nk.lall r~. (3) kn is not too 
small, i.e. if nt-lall r~ s then I. < k.. 

B2. The number of  factors 2 in a 

If U and V are not both even then U 2 -  U V +  V 2 
is odd. From this follows: 

Lemma 1. Let p be the largest integer such that 
2"1U and 2"1 V, q the largest integer such that 2ql U 2-  
U V +  V 2. Then q = 2p. 

If m and W are not both even then 413m2+ W = 
and 8-t'3m2+ W 2 if m and W are odd, 24"3m2+ W 2 
otherwise. From this follows: 

Lemma 2. Let p be the largest integer such that 
2"~m and 2" I W, q the largest integer such that 2q13m 2 + 
W .  Then q = 2 p + 2  if 2"+~[m + W, q = 2 p  otherwise. 

The reasoning that led to these lemmas shows also 
that a~ defined by (41) is either odd or a multiple of 
4. In fact, if al  is even then (a) U 2 -  U V +  V 2 is even, 
whence U and V are even, i.e. 41U 2 -  U V +  V2; (b) 
3m2+ W 2 is even, whence m and W are odd [they 
cannot both be even because of (19)], i.e. 413m2+ W 2. 
It follows that 4Ioq. 

B2.1. k2 according to the theorem 

It will be shown here that the theorem gives four 
cases (a ) - (d )  with k2> k, where k is the number of 
factors 2 in fly. Equation (31) shows that either 24"/z 
or 2-t'v, i.e. at most one of the two numbers fl and y 
contains factors 2. 

(1) 4]al. Then 21(U, V), 24"(m, W).* 
(1.1) k = 0 .  Then 2-t'(a2, c~4). a3 = 1 because 

lemma 2 shows that (3m2+ W2)/oq is 
odd. Then k 2 = k + 2  (al). This covers 
also the case 2#/,  for arbitrary k because 
then 2klg.c.d. (v,m, W), whence k = 0  
because 2-t'(m, W). 

(1.2) k > 0 ,  2,t'v, i.e. 2klg.c.d. (/z, U, V). Then 
2"1"(c~3, tz4). (42) then gives k2 = k + 2  if 
22kl(U2-UV+ V2)/4. Lemma 1 shows 
that this is the case if and only if 
2k+ll(U,V)(a2).  Otherwise k 2 = k + l  
because 2=(k-1)I(u 2 -  U V +  V=)/4 is 
always satisfied (c). 
4 Y a  I . 
2"t'/Z, i.e. 2 k l g . c . d .  ( v ,  m ,  W ) .  T h e n  2-f'oe 2. 

t~3 = 1. Equation (44) gives k2 = k. 
a3 > 1, i.e. 21 v and 2[ m + W. Then k2 = k 
i f  2k+l- t ' / ,  ,, k E = k + 2  i f  2k+2[/. ' and 
2k+l[m+ W (because in this case a 3 = 4  
and c~4=2 k by lemma 2) ( b ) , ' k 2 = k + l  
otherwise (d). 
24"v, i.e. 2klg.c.d. (/z, U, V). Then 24"(a3, 
t~4). Equation (42) gives k2 = k; 

(2) 
(2.1) 
(2.1.1) 
(2.1.2) 

(2.2) 

* n](p, q) means  n divides p and q, i.e. n]p and n[q; ne((p, q) 
means n divides neither p nor  q, i.e. n#p and n~'q. 
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In summary, the theorem gives k2 = k except in the 
cases ( a ) - ( d ) ,  where k 2 = k + 2  if (a) or (b) is 
satisfied, k2 = k + 1 otherwise: 

(a) 2k[~, 2 ~ [(U, V), m and W odd 
(b) 2k+2lv, I(m, W), 2k+' lm+ W 
(c) 2kl(tt, U, V), m and W odd, k >  0 
(d) 2k+'lu, 2kl(m, W), 2Ira+ W. 

B2.2. k2 is not too large 

It has to be shown that 2k~lall r~. This follows from 
(33): for k2 = k it has been shown in ( l a )  of § 7; for 
(b), (c) and (d) it is easily verified; to verify it for 
(a), the following hints may be useful: To see that 

-t- -1- 
2 k+2 divides r~ and r22 use the fact that W +  m are 
even, 3 m E ± 2 m W  - w E = 3 m  2+ W 2 - 2 W ( W ~ m ) ;  

+ -l- 

to see that 2 k+2 divides r31 and r32 use the fact that 
W ± 3 m are even. 

(3.1.1) 

(3.1.2) 

(3.2) 

k > 0. Equations (34h) and (34n) show 
that 2k+l[(vU 2, ~'V2). Since U and V are 
not both even according to (19), it fol- 
lows that 2k+~[U. Then (d) is satisfied. 
k = 0 .  From 2[r3+3 follows 213m2+ W 2, 
whence m and W are both even or both 
odd, i.e. (d)  is satisfied. 
2-t'v. The definition of k gives 
2k[(tZ, U, V). Equations (34h) and (34n) 
show that 2[( U, V) also i fk  = 0. Equation 
(19) gives therefore for all values of k 
that m and W are not both even. 2 k+l 

+ + 

divides  r33 , r32 and r31 and therefore 
tz(3m2+ wE), U ( 3 m +  W) and V(3m+ 
W). If m or W is even then it follows 
that 2k+~lg.c.d. (/x, U, V) contrary to the 
definition of k, i.e. m and W are odd. It 
follows that (c) is satisfied if k >  0 and 
(a) if k -- 0. 

B2.3. k2 is not too small 

It has to be shown that (1) 2 k+3 not all ri ~., (2) 
2k+21all r~ only if (a) or (b) is satisfied, (3) 2~+~lall 
r~ only in the cases ( a ) - ( d ) .  

(1) Assume 2k+31all r~. 
(1.1) 2-t'/z. Equation (38) shows 

2k+l[(m, W, vU, vV).  Equation (19) gives 
2k+~l~,, i.e. 2k+~[7 contrary to the 
definition of k. 

(1.2) 2-t" v. Equation (38) shows 2k+~l(tzm, oW, 
U, V). Equation (19) gives 2k+~l/x, i.e. 
2k+~1/3 contrary to the definition of k. 

(2) Assume 2k+21all r~. 
(2.1) 2-t'/z. Equation (38) shows 2kl(m, W),  

2k+'l(vU, vV). 
+ 

(2.1.1) k = 0  and U, V even. 41r33 shows that 
413m2+ W 2. This is possible only if m 
and W are odd because they cannot both 
be even according to (19). It follows that 
(a) is satisfied. 

(2.1.2) k = 0 and U, V not both even or k >  0. 
Equation (19) shows that U and V are 
not both even also if k >  0. It follows 
then from (34h) and (34n) that 2k+2[P. 
2k+2 + 1r33 shows that  2k+213m2+ W 2. 
Lemma 2 shows that 2k+~lm + W, i.e. (b) 
is satisfied. 

(2.2) 24"v. Equations (38c) and (38d) show 
2k+~l(U , V). The definition of k gives 
2kl~z and 2k+ld'/Z. 2k+2lr~- 3 shows that 
413m2+ W 2. This is possible only if m 
and W are odd because they cannot both 
be even according to (19). It follows that 
(a) is satisfied. 

(3) Assume 2k+l[all r~. 
(3.1) 21z,. Then 24"/x because of (31). The 

definition of k gives 2kl(u, m, W). 

B3. The number o f  factors 3 in a 

Use will be made of the following results: 

Lemma 3. Let p be the largest integer such that 
3P[ U and 3P[ V, q the largest integer such that 3q[ U 2 - 
U V +  V 2. Then q = 2 p + l  if 3P+I[U-+ - V, q = 2 p  
otherwise. 

Proof: q >- 2p is obvious. U 2 -  UV + V 2 = 
( U +  V)2-3UV. If 3P+I'I'U+ V then q = 2 p  because 
32p+i13UV , 32p+Id'(U+V) 2. If 3P+~IU+ v then q -  
2 p + l  and 32p+2](U+ V) 2. q > 2 p + l  is not possible 
because it would follow that 3p+213 UV, i.e. 3P+a I U or 
3P+'I V. But then 3P+'I U and 3P+'I V because 3P+~I U +  
V, contradicting the definition of p. 

If m and W are not both multiples of 3 then 
313m2+ W 2 and 9-1"3m2+ W 2 if 31w, 3"1"3m2+ W 2 
otherwise. From this follows: 

Lemma 4. Let p be the largest integer such that 
3Pl m and 3P] W, q the largest integer such that 3 ql3 m 2 + 
W 2. Then q = 2p + 1 if 3P+a I W, q = 2p otherwise. 

B3.1. ka according to the theorem 

It will be shown here that the theorem gives three 
cases (a ) - ( c )  with k3 > k, where k has been redefined 
to be the number of factors 3 in fly. Equation (31) 
shows that either 3-t'/z or 3-t'v, i.e. at most one of the 
numbers/3 and y contains factors 3; (43) shows that 
3q'a 3 . 

(1) 31~1-Then 31( W, U + V). 
(1.1) k = 0 .  Then 3-ra4. If 31~2 then 31~ and 

91U 2 -  U V +  V 2. Lemma 3 gives 31U and 
31 V, i.e. 31/3, contradicting k = 0. It fol- 
lows that k 3 = k-F 1 (al). 
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(1.2.1) 

(1.2.2) 

(2) 
(2.1) 

(2.2) 

k > 0 ,  3-r/z, i.e. 3k[g.c.d. (v, m, W). 3-ra2. 
Equation (44) gives because of lemma 4 
k 3 = k + l  if 3k+l lW(a2)  , k 3 = k  
otherwise. (2) 
k > 0 ,  3-rv, i.e. 3klg.c.d. (/x, U, V). 3d'ct4, 
3k[a2 . L e m m a  3 shows similarly as in (2.1) 
(1.1) that 3k+l-rc~2. It follows that k3= (2.1.1) 
k +  1 (b). 
34"c~1. (2.1.2) 
34"/z, i.e. 3k]g.c.d. (v, m, W). 34"ce2. 
Equation (44) gives k3 = k. 
34"v, i.e. 3klg.c.d. (/z, U, V). 34"a4. (2.2) 
Equation (42) gives because of lemma 3 
k 3 = k + l  if 3k+ll(jz , U +  V ) ( c ) ,  k 3 = k  
otherwise. 

divides none then 3k+ll(m , v), i.e. 3k+lly 
contrary to the definition of k. It follows 
that (a) is satisfied. 
3]/z. Then 3-rv because of (31)• Equation 
(38) shows 3k+II/zW, 3kl(/zm, U, V). 
k > 0 .  
31W. Equation (19) shows that 3kl/z, i.e. 
(b) is satisfied. 
3-rW. Then 3k+ll/L From 3k+11 + • r31 follows 
3k+112U- V, whence 3k+I Iu+  V, i.e. (c) 
is satisfied. 
k = 0 .  It follows from 31r~3 that 3IU 2 -  
U V +  V 2, i.e. 31 U +  V. It follows that (c) 
is satisfied. 

In summary, the theorem gives k3 = k except in the 
cases (a ) - ( c ) ,  where k 3 = k +  1: 

(a) 3kl(v, m), 3k+llW, 31U+ V 
(b) 3kl(/z, U, V), 3q" W, k > 0 
(c) 3k+ll(/~, U +  V), 3kl(U, V). 

B3.2. k 3 is not too large 

It has to be shown that 3k~lall r~. This follows from 
(33)" for k2 = k it has been shown in ( l a )  of § 7; for 
(b) it is easily verified because k >  0; to verify it for 
(a) and (c) one makes use of U 2 - V  2= 
( U + V)(  U -  V),  U 2 -  U V  + V 2 = ( U + V) 2 -  3 UV, 
2 U - V = 3 U - ( U +  V),  2 V - U = 3 V - ( U +  V). 

B3.3. k3 is not too small  

The proof that 3 k+:lnot all r~ is similar to the proof 
that 2k+31not all r~, given in B2.3. It remains to show 
that k+l 4- • 3 lall ro only m the cases (a ) - (c ) .  

-4- Assume 3 k+l all r o. 

(1) 34"/z. Equation (38) shows 3k+l[w, 
3k[(m, vU, vV) .  It follows that 3klv 
because of (19) if k > 0  and trivially if 
k- -0 .  Because 3-t'/z, it follows from 
3k+llrx+3 that 3 k + [ m ( 2 V - - U )  and from 
3k+llr3+3 that 3 k÷l I v ( U  2 -  U V +  V2). If 
3[ U +  V then 3 divides both 2 V -  U and 
U 2 -  U V +  V 2, otherwise none. If it 
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